Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong Sun ${ }^{\text {a }}$ and Yang-Gen Hu ${ }^{\text {b }}$

${ }^{\text {a }}$ Yunyang Teachers College, Danjiangkou 442700, People's Republic of China, and ${ }^{\text {b }}$ Department of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China

Correspondence e-mail: suny6135@126.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.132$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(4-Methylphenyl)-2-morpholinobenzo[4,5]-furo[3,2-d]pyrimidin-4(3H)-one

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$, the three fused rings of the benzofuro $[3,2-d]$ pyrimidine system are almost coplanar. The packing of the molecules in the crystal structure is mainly governed by $\pi-\pi$ and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonding interactions. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds link the molecules into dimers.

Comment

The derivatives of benzofuropyrimidines are of great importance because of their remarkable biological properties (Bodke \& Sangapure, 2003). In recent years, we have been engaged in the preparation of the derivatives of heterocycles via the aza-Wittig reaction. The title compound, (I), may be used as a new precursor for obtaining bioactive molecules.

Fig. 1 shows the molecular structure of (I) with the atomic numbering scheme. The three fused rings of the benzo-furo[3,2-d]pyrimidine system are almost coplanar. The morpholine ring has a total puckering amplitude of 1.022 (3) \AA (Cremer \& Pople, 1975) and a distorted chair form

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 7 November 2005 Accepted 17 November 2005 Online 23 November 2005

Figure 2
Part of the crystal structure of (I), showing hydrogen-bonding associations (dashed lines) and $\pi-\pi$ stacking interactions.
[$\varphi=-31.0(4)$ and $\left.\theta=57.8(5)^{\circ}\right]$. The bond lengths and angles (Table 1) are in agreement with reported literature values (Allen et al., 1987).

Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2, and Figs. 2 and 3) seem to be effective in stabilizing the crystal structure. There are also intermolecular $\pi-\pi$ interactions (Fig. 2). In the benzofuro[3,2- d]pyrimidine system, the centroid-to-centroid distance is 3.616 (13) \AA. The dihedral angle between the rings $\mathrm{O} 1 / \mathrm{C} 5-\mathrm{C} 8$ and $\mathrm{C} 1-\mathrm{C} 6$ is 1.19 (1) ${ }^{\circ}$. The angles between the ring-centroid vectors and the ring normals [17.67 (2) and $\left.19.94(2)^{\circ}\right]$ support the existence of $\pi-\pi$ interactions (Janiak, 2000).

In the crystal structure, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds link the molecules into dimers. As can be seen from the packing diagram (Fig. 3), the dimers are stacked along the b axis.

Experimental

Phenyl isocyanate (3 mmol) was added to a solution of iminophosphorane ($1.40 \mathrm{~g}, 3 \mathrm{mmol}$) in dry dichloromethane (15 ml) under nitrogen at room temperature. When the reaction mixture had stood for 10 h at $273-278 \mathrm{~K}$, the solvent was removed under reduced pressure and diethyl ether/petroleum ether ($1: 2 \mathrm{v} / \mathrm{v}, 20 \mathrm{ml}$) was added to precipitate triphenylphosphine oxide. After filtration the solvent was removed to give the carbodiimide, (II), which was used directly without further purification. Morpholine (3 mmol) was added to a solution of (II) in dichloromethane (15 ml). After the reaction mixture was allowed to stand for 0.5 h , the solvent was removed, and anhydrous ethanol (10 ml) and several drops of EtONa in EtOH were added. The mixture was stirred for 3 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound (I) (yield $0.89 \mathrm{~g}, 82 \%$, m.p. 466 K). Suitable crystals were obtained by vapor diffusion of ethanol into a dichloromethane solution at room temperature. Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$

Figure 3
Packing diagram of (I). Hydrogen bonds are shown as dashed lines.
$2.43\left(s, 3 H, C_{3}\right), 3.18\left(t, 4 \mathrm{H}_{2} \mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right), 3.46\left(t, 4 \mathrm{H}, \mathrm{CH}_{2}, J=\right.$ $4.4 \mathrm{~Hz}), \quad 7.26-8.03 \quad(m, \quad 8 \mathrm{H}, \quad \mathrm{Ar}-\mathrm{H})$. MS (EI 70 eV) m / z (\%): 361 ($M^{+}, 73$), 316 (88), 275 (81), 130 (100), 91 (95). Elemental analysis calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$: C 69.41, H $5.82, \mathrm{~N}$ 11.56%; found: C 69.32 , H $5.75, \mathrm{~N} 11.69 \%$.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=361.39$
Monoclinic, C2/c
$a=22.8042(16) \AA$
$b=10.9268$ (8) \AA
$c=17.7465$ (12) \AA
$\beta=125.562(1)^{\circ}$
$V=3597.3$ (4) \AA^{3}
$Z=8$

$$
D_{x}=1.335 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3724 reflections
$\theta=2.2-24.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
14758 measured reflections
3923 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.132$
$S=1.05$
3923 reflections
245 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C5-O1	$1.381(2)$	C10-N2	$1.3042(19)$
C5-C6	$1.388(3)$	C10-N3	$1.388(2)$
C6-C7	$1.448(2)$	C11-N3	$1.464(2)$
C7-C8	$1.350(2)$	C11-C12	$1.500(3)$
C7-N2	$1.365(2)$	C12-O3	$1.414(3)$
C8-O1	$1.3833(19)$	C13-O3	$1.417(2)$
C9-O2	$1.2165(19)$	C13-C14	$1.505(2)$
C9-N1	$1.434(2)$	C14-N3	$1.470(2)$
N3-C11-C12	$109.42(15)$	N3-C14-C13	$109.69(15)$
O3-C12-C11	$111.69(17)$	C11-N3-C14	$110.35(14)$
O3-C13-C14	$111.36(15)$	C12-O3-C13	$109.42(15)$
N3-C11-C12-O3	$58.5(2)$	C13-C14-N3-C11	$55.07(19)$
O3-C13-C14-N3	$-57.6(2)$	C11-C12-O3-C13	$-60.5(2)$
C12-C11-N3-C14	$-55.3(2)$	C14-C13-O3-C12	$59.9(2)$

Table 2
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.47	$3.372(2)$	164

Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.

The H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93(\mathrm{CH})$, $0.97\left(\mathrm{CH}_{2}\right)$ and $\left.0.96 \AA\left(\mathrm{CH}_{3}\right)\right]$ and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})$ values of $1.2\left(1.5\right.$ for methyl) times $U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bodke, Y. \& Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187-189.
Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, pp. 1354-1358.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

